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The quantum Rabi model describes the ultrastrong interaction of a two-level atom coupled to a single
quantized bosonic mode. As compared to the Jaynes–Cummings model, in the Rabi model the absorption
and emission processes do not need to satisfy energy conservation and the usual rotating wave ap-
proximation (RWA) breaks down. As a result, the atom-field dynamics in the Hilbert space splits into two
independent parity chains, exhibiting a collapse-revival pattern and exact periodic dynamics in the limit
of degenerate atomic levels. Here we introduce a mixed Rabi Jaynes–Cummings model by considering a
three-level atom interacting with two quantized bosonic fields, in which the RWA is made for one
transition (with a weak atom-field coupling) but not for the other one (with an ultrastrong atom-field
coupling). As a result, we show that the field in the weak coupled atomic transition can be used as a tool
to control the atom-field dynamics of the other (strong coupled) transition, thus realizing an effective
two-level quantum Rabi model with a controllable field. In particular, a periodic temporal dynamics of
the atom-field state can be realized by appropriate tuning of the weak control field, even for non-de-
generate atomic levels. A photonic simulator of the mixed Rabi Jaynes–Cummings model, based on light
transport in evanescently coupled optical waveguide lattices, is also briefly discussed.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

The well-known quantum Rabi model [1–4], describing a two-
level atom coupled to a quantum harmonic oscillator, continues to
produce rich and surprising physics, with plenty of applications in
a variety of physical systems. The quantum Rabi model has been
applied to numerous experimental systems in quantum optics or
condensed matter, such as cavity quantum electrodynamics (QED)
[5–7], quantum dots [8], superconducting qubits [9,10] and trap-
ped ions [11,12]. In most cases, when the external field is weak
enough [13], the rotating wave approximation (RWA) is applied
and in such a way the famous Jaynes–Cummings model is ob-
tained [14]. However, in recent years, new regimes have been
explored [15–23], in which the effect of counter-rotating terms
cannot be neglected. Such regimes are the ultrastrong coupling of
light-matter interactions [17–21] and the deep strong coupling
(DSC) [22,23]. In the DSC regime, the absorption and emission
processes do not need to satisfy energy conservation and the
hysics, Bulgarian Academy of
ria.
osov).
atom-field dynamics is more involved and splits into two parity
chains in Hilbert space. As a result, the atom-field state undergoes
revival and collapse dynamics in Hilbert space [22]. Remarkably, in
the limit of degenerate atomic levels the dynamics becomes ex-
actly periodic [22]. Recent works have shown that the quantum
Rabi model can be simulated by using light transport in en-
gineered waveguide superlattices [24–26]. This could allow the
DSC regime, which is hard to access experimentally in cavity QED,
to be successfully simulated in other physical contexts. In spite of
the vast research in this area and the relative simplicity of the Rabi
model, its integrability has been proven just recently [27–29].

In the past few decades, several theoretical and experimental
works have shown that many interesting coherent phenomena
can be observed when more than two atomic levels are involved in
the dynamics. In particular, the three level system exhibits a ple-
thora of coherent phenomena such as two-photon coherence [30],
resonance Raman scattering [31], double resonance process [32],
three-level super radiance [33] and quantum jumps [34], to
mention a few. The quantum dynamics of a three-level atom in-
teracting with two resonant or near resonant modes of a steady
field has been generally studied by assuming either quantized
fields, using a dressed-state formalism within the RWA (extended
Jaynes–Cummings models [35–37]), or the Floquet approach for
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classical fields [38–41]. In such previous works, the strong cou-
pling regime was considered solely in the semiclassical limit, i.e.
for classical fields, where a Floquet analysis of the underlying
time-periodic equations for the atomic population amplitudes can
be employed for sinusoidal external fields [42]. However, for
quantized fields the ultrastrong coupling regime in the three-level
atomic system, which breaks the RWA, was not investigated.

In this paper, we study in detail a three-level atomic system
interacting with two quantized fields, where one field is near-re-
sonant and weakly coupled with one atomic transition whereas
the other field is strongly coupled to the other atomic transition.
Such a quantum model can be refereed to as mixed Rabi Jaynes–
Cummings model, because the RWA can be applied to one tran-
sition, but not to the other one. We derive the coupled differential
equations, describing the temporal evolution of the quantum
system in Hilbert space, and show that the weak-coupling filed can
be used as a tool to control the dynamics in Hilbert space of the
atom-field state for the other transition. In particular, the weak
control field can be tuned to realize exact periodic of the atom-
field state even if the strongly coupled atomic levels are not de-
generate. A possible physical implementation of the mixed Rabi
Jaynes–Cummings model, using arrays of coupled optical wave-
guides with engineered coupling constants, is also briefly
discussed.
2. The model

We consider a three-level quantum system, with atomic states
1 at| 〉 , 2 at| 〉 , and 3 at| 〉 , interacting with two bosonic (e.g. electro-
magnetic) fields of states n k, bos| 〉 , where n and k are the number of
bosons in the two fields (Fig. 1). Such system is described by the
Hamiltonian

H E a a a a

g a a g a a( )( ) ( )( ), (1)
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i ii
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1 1 1 2 2 2
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where 1,2ω are the frequencies of the fields that are responsible for
the 1 3at at| 〉 –| 〉 and 2 3at at| 〉 –| 〉 atomic transitions, respectively. The
coupling strengths are parameterized by g1 and g2, a1, 2

† and a1,2 are
the creation and annihilation operators for the two modes and

i jij at atσ = | 〉 〈 |. We now assume 1 2ω ω≪ and a resonant and weak
coupling for the 2 3at at| 〉 –| 〉 transition, hence E E2 3 2ω = − and
g k E E2 3 2≪ − . Under these conditions we can apply the RWA

for this transition, discarding the counter-rotating terms a32 2σ † and
a23 2σ , and the Hamiltonian now reads
Fig. 1. Schematic of a three-level system interacting with two bosonic m
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The model described by the Hamiltonian (2) is a mixed Rabi and
Jaynes–Cummings model, because the RWA is performed for one
of the two transitions (like in standard Jaynes–Cummings model)
but not for the other one (like in the quantum Rabi model). To
study the exact temporal evolution of the atom-field state t( )Ψ| 〉 in
the mixed Rabi Jaynes–Cummings model, let us expand the state
vector of the system as

⎡
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⎢
⎢
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⎥t C t C t C t n k( ) ( ) 1 ( ) 2 ( ) 3 , ,
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where Cn k
l
,

( ) is the probability amplitude to have (n,k) bosons in the
two fields and the atom in level l at| 〉 . Substitution of the ansatz (3)
into the Schrödinger equation

i t H t( ) ( ) , (4)t Ψ Ψ∂ | 〉 = | 〉

yields the following coupled differential equations for the prob-
ability amplitudes:
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The coupling between the amplitudes can be visualized as two
sets of uncoupled chains, where each lattice site corresponds to a
different state of the atom-field system. Depending on the initial
condition, one of the two sets is realized and the other one is ir-
relevant. The chains in each set are uncoupled in the k direction,
because of the RWA, while in the n direction they are semi-infinite
with a gradient in the boson number. This is depicted in Fig. 2,
where we show the two coupling schemes, for a particular value of
the second-mode boson number k κ= . The top part of the picture
shows the coupling scheme with only even number n of bosons in
the first mode when the atom is in state 1 at| 〉 . On the opposite, the
bottom part contains only odd number of bosons n when the atom
is in 1 at| 〉 . In what follows, we will assume that the initial condition
odes with n quanta at frequency ω1 and k quanta at frequency ω2.



Fig. 2. Coupling scheme after RWA for the 2 3at at| 〉 –| 〉 transition. Depending on the initial condition, the chain contains only (top) even number or (bottom) odd number of
bosons in the first mode when the atom is in state 1 at| 〉 .
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is (0) 1 0,at bosΨ κ| 〉 = | 〉 | 〉 and hence the top part of Fig. 2 is relevant.
A more suitable basis for the vector state of the system is
b b b b b b[ , , , , , , ]1 2 3 4 5 6| 〉 | 〉 | 〉 | 〉 | 〉 | 〉 … , where
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In this basis, the Hamiltonian can be represented in the following
matrix form:
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where we have discarded the common diagonal term 2κ ω and we
have used the resonance condition E E3 2 2ω= + . It should be
noted that the type of Hamiltonian matrix given by Eq. (7),
obtained by projection of the full quantized Hamiltonian in the
atom-field basis l n k,at bos| 〉 | 〉 (l 1, 2, 3= ), has a similar structure of
the Floquet matrix that one would obtain in the semiclassical limit,
i.e. when the strong field at frequency ω1 is assumed to be a
classical field (coherent state). In the semiclassical analysis, the
equations of the atomic field amplitudes without the RWA for the
transition 2 3at at| 〉 –| 〉 are coupled by the oscillating field at frequency
ω1, i.e. they form a set of non-autonomous equations with periodic
coefficients. The semiclassical time-periodic Hamiltonian of the
atomic amplitude probabilities can be cast into an equivalent
infinite-dimensional time-independent matrix Hamiltonian by
standard Floquet approach [42]. The resulting Floquet matrix has
a form similar to Eq. (7). The main difference between the classical
and quantized field descriptions is that in the latter case the
couplings, described by the two second main diagonals of Eq. (7),
depend on the photon number. Since the spectrum of the matrix H
is generally not equally spaced, the atom-field dynamics is gen-
erally aperiodic, regardless the field at frequency ω1 is considered
classical or quantized. In particular, if the control field at frequency
ω2 is switched off (g 02 = ), the Hamiltonian H reduces to that of
the two-level quantum Rabi. In this case it is known that the
spectrum of H is not equally spaced, unless the degenerate level
limit E E 03 1− → is considered [22]. In the semiclassical limit, the
lack of periodicity can be explained on the basis of Floquet theory
of the strongly driven two-level atomic transition, in which two
generally incommensurate frequencies are involved (the
frequencyn ω1 of the external field and the difference of the quasi
energies; see, for instance, [43]). To calculate the energy spectrum
of H and the atom-field dynamics in the general case g 02 ≠ , one
has to resort rather generally to a numerical analysis. However,
some interesting physics can be found if one takes a different
approach. We note that the coupling strength g2 κ splits the
common energy E n E n3 1 2 2 1ω ω ω+ = + + of the states

n3 ,at bosκ| 〉 | 〉 and n2 , 1at bosκ| 〉 | + 〉 into an Autler–Townes doublet,
and in such a way a dressed picture is obtained, where the
energies of the two dressed states are equal to
E n g3 1 2ω κ+ ± . If now we set g E E2 3 1κ = − we obtain for
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b

c

Fig. 3. Time evolution of (a) the populations of states 1 at| 〉 , 2 at| 〉 and 3 at| 〉 , (b) revival
probability t(0) ( ) 2Ψ Ψ〈 || 〉 and (c) boson number in the first mode. The energies of
the bare states are E 901 1ω= , E 02 = , E 1003 1ω= . The coupling strengths are
g 1.51 1ω= and g E E2 3 1κ = − and the mode frequencies are 1002 1ω ω= .

a

b

c

Fig. 4. Same as Fig. 3, but for g E E 22 3 1 1κ ω= − + .
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the lower energy of the dressed states
E n g E n3 1 2 1 1ω κ ω+ − = + . In such a way, for g g n2 1κ ≫ ,
we obtain a one-dimensional coupled chain with a boson number
gradient. This corresponds to the limit of degenerate qubit levels
of the two-level quantum Rabi model, which was described in
[24,25]. This system is characterized with a strictly periodic
behavior of the populations and the boson number. We illustrate
this in Fig. 3, where we plot the time evolution of the populations
of the three levels, the revival probability t(0) ( ) 2Ψ Ψ〈 | 〉 , and the
boson number as a function of time. The initial condition is

(0) 1 0,at bosΨ κ| 〉 = | 〉 | 〉 . The figure clearly reveals a periodic dynamics
with a period of approximately 2 / 1π ω . We also notice that the
mean boson number of the first mode never obtains too large
values, which justifies the use of the approximation g g n2 1κ ≫ .

On the contrary, if the coupling strength g k2 is not tuned to
E E3 1− , we will get a non-periodic behavior of the dynamics. This
is shown in Fig. 4.
3. Conclusions and discussion

In this paper we have studied theoretically a mixed Rabi
Jaynes–Cummings model of three-level atom interacting with two
quantized bosonic modes, for which the RWA can be applied for
one transitions solely. We have derived the differential equations,
describing the evolution of the system in Hilbert space, and shown
that the weak-coupled bosonic mode can be exploited to control
the dynamics of the atom-field of the strong-coupled transition. In
particular a transition from non-periodic to near-periodic behavior
of the evolution has been found by appropriate tuning of the
control weak field. Such a transition has been related to the
spectrum of the two-level quantum Rabi Hamiltonian, which
shows an equally spaced energy ladder structure in the limit of
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degenerate energy levels. As a final comment, let us briefly men-
tion that the mixed Rabi Jaynes–Cummings model introduced in
the present work can be simulated in an optical setting, following
an approach similar to the one recently proposed and demon-
strated in Refs. [24,25]. The coupling scheme shown in Fig. 2 can
be implemented in classical optics by using evanescently coupled
dielectric waveguides. For this aim, one should notice that Eqs. (5)
are analogous to the coupled-mode equations describing light
transport in a semi-infinite one-dimensional photonic lattice in
the tight-binding approximation with additional waveguides,
which couple to only the even-number waveguides from the
chain. The lattice shows a superimposed transverse index gradient
and a non-uniform coupling constant between adjacent wave-
guides. The coupling constants are controlled by the distance dn
between the waveguides and the index gradient ω1 is given by

n a R2 /( )s1ω π λ= , where ns is the refractive index of the substrate, λ
is the wavelength of light, R is the bending radius of curvature and
a is the horizontal spacing of the waveguides (see, for instance
[44,45]). The coupling strength J g nn 1= between the neigh-
boring waveguides is given to an excellent accuracy by the ex-
ponential law J dexp( )n nχ α= − , where χ and α are some con-
stants which depend on the waveguide fabrication parameters and
can be experimentally determined.
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